Thickness, Relative Hyperbolicity, and Randomness in Coxeter Groups
نویسندگان
چکیده
For right-angled Coxeter groups WΓ, we obtain a condition on Γ that is necessary and sufficient to ensure that WΓ is thick and thus not relatively hyperbolic. We show that Coxeter groups which are not thick all admit canonical minimal relatively hyperbolic structures; further, we show that in such a structure, the peripheral subgroups are both parabolic (in the Coxeter group-theoretic sense) and strongly algebraically thick. We exhibit a polynomial-time algorithm that decides whether a right-angled Coxeter group is thick or relatively hyperbolic. We analyze random graphs in the Erdós-Rényi model and establish the asymptotic probability that a random right-angled Coxeter group is thick. In the joint appendix we study Coxeter groups in full generality and there we also obtain a dichotomy whereby any such group is either strongly algebraically thick or admits a minimal relatively hyperbolic structure. In this study, we also introduce a notion we call intrinsic horosphericity which provides a dynamical obstruction to relative hyperbolicity which generalizes thickness.
منابع مشابه
2 9 O ct 2 00 6 RELATIVE HYPERBOLICITY AND ARTIN GROUPS
This paper considers the question of relative hyperbolicity of an Artin group with regard to the geometry of its associated Deligne complex. We prove that an Artin group is weakly hyperbolic relative to its finite (or spherical) type parabolic subgroups if and only if its Deligne complex is a Gromov hyperbolic space. For a 2-dimensional Artin group the Deligne complex is Gromov hyperbolic preci...
متن کاملRelative Hyperbolicity and Right-angled Coxeter Groups
We show that right-angled Coxeter groups are relatively hyperbolic in the sense defined by Farb, relative to a natural collection of rank-2 parabolic subgroups.
متن کاملRelative Hyperbolicity and Artin Groups
This paper considers the question of relative hyperbolicity of an Artin group with regard to the geometry of its associated Deligne complex. We prove that an Artin group is weakly hyperbolic relative to its finite (or spherical) type parabolic subgroups if and only if its Deligne complex is a Gromov hyperbolic space. For a 2-dimensional Artin group the Deligne complex is Gromov hyperbolic preci...
متن کاملA Note on Relative Hyperbolicity and Artin Groups
In [12], I. Kapovich and P. Schupp showed that certain 2-dimensional Artin groups (those with all relator indices at least 7) are hyperbolic relative (in the sense of Farb) to their non-free rank 2 parabolic subgroups. This paper considers the question of relative hyperbolicity of an Artin group with regard to the geometry of the associated Deligne complex. We prove a relative version of the Mi...
متن کاملRelative Hyperbolicity, Classifying Spaces, and Lower Algebraic K-theory
For Γ a relatively hyperbolic group, we construct a model for the universal space among Γ-spaces with isotropy on the family VC of virtually cyclic subgroups of Γ. We provide a recipe for identifying the maximal infinite virtually cyclic subgroups of Coxeter groups which are lattices in O+(n, 1) = Isom(Hn). We use the information we obtain to explicitly compute the lower algebraic K-theory of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016